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LETTER TO THE EDITOR 

Long-time asymptotics of diffusion in random media and 
related problems 

Hajo Leschke and Siegfried Wonneberger 
lnstitut fur Theoretische Physik, Universitat Erlangen-Nurnberg, D-8520 Erlangen, Federal 
Republic of Germany 

Received 29 August 1989 

Abstract. For n-dimensional diffusion in Gaussian random fields, with continuous and 
singular covariances, the leading long-time behaviour of the averaged population is derived 
by estimating Brownian motion expectations. It is shown how these results are related to 
the leading low-energy behaviour of the density of states for a particle in a corresponding 
random potential and to the strong-coupling limit of the free energy of the Pekar-Frolich 
polaron. 

Diffusion in random media [ l -31 is relevant in various fields of physics and also in 
chemistry and biology. While recently a first attempt has been made to derive intermedi- 
ate-time aspects of the averaged population [4], the more accessible long-time 
asymptotics is still actively debated [ M I .  Our goal in the present letter is to contribute 
to the latter issue by solving a generalisation of a problem considered in [ 6 , 8 ]  and to 
eastablish its relation to important problems of condensed matter physics. Basically, 
our method of solution consists in constructing appropriate bounds for the averaged 
population. Some of the non-asymptotic bounds have an independent significance 
because they provide an elucidating control already for finite times. 

Now we are going to state our main assertions. For the fundamental solution 
P( t ,  x )  of the linear reaction-diffusion equation in n-dimensional Euclidean space 

with diffusion constant D > 0 and the homogeneous Gaussian random field V charac- 
terised by the moments 

- 
V ( x )  = 0 V ( x )  V ( x ' )  = C ( x  - x ' )  (2) 

we present the leading long-time behaviour of its average for two different types of 
covariances C. 

For continuous covariances the behaviour is 

lim i+m t - 2  lnP(t, x )  = c ( o ) / ~ .  (3)  

For the singular covariance 

for n = l  
for n s 2  

C(x)  = 2{ 
1x1-' 

(4) 
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the behaviour is 
- v4 

lim t - 3  InP( t, x)  = - yn 
1 - ‘ X  4 0  

with the numerical constant 

The supremum has to be taken over real-valued functions f satisfying the normalisation 

IR,, dxf2(x) = 1. 

Before giving the proofs, we offer several remarks in order to make contact to 
earlier results in the literature and to show interesting implications for two problems 
of condensed matter physics. Moreover, we will give information on the numerical 
value of the constant yn.  

Remark 1. Equation (3)  confirms a result in [2] obtained there by a discrete-space 
approach. We note that C does not need to be smooth. An example is C ( x ) =  
exp(-alx)’’2) ( n  = 1, a > 0), which indeed has a non-negative Fourier transform by 
P6lya’s condition [ 9 ] .  We stress that the super-exponential asymptotic growth P - 
exp( t’)  is independent of the diffusion constant and the dimension. 

Remark 2. Of course, if C(0j is infinite, the asymptotic growth must be even stronger. 
An example of considerable physical relevance (see also remarks 5 and 6 below) is 
given by (4). Here the scaling relation 

leads to the asymptotic growth P-exp(t3). It is interesting to note that in higher 
dimensions a long-range-correlated random field causes the same long-time behaviour 
as the short-range-correlated white noise in one dimension. We also note that the 
inequality 

C(Ax) = C(x)/A A > O  (7)  

t 3  v4 
4 0  

P( t ,  0) 2 (47rDt)-“” exp( - y n )  

according to [ 10,111 already reflects the right asymptotic behaviour. 

Remark 3. Specialising ( 5 )  or (8) to n = 1 shows that the assertion of [ 6 ]  is wrong. 
The inaccuracy of that assertion has also been observed in [8]. There, an asymptotic 
result essentially equivalent to 

- v4 
lim t - 3  In IR dx P( t, x)  = - y ,  
1 - 0 5  4 0  ( 9 )  

was found by using plausible arguments. This result is sufficient to disprove [ 6 ] ,  as 
can be seen by integrating the inequality 

(10) 
-- 
P( t ,  x)  s P( t, 0) exp( - x 2 / 4 ~ t )  

over x. 
A derivation of (10) for general covariances and dimensions is given below. We 

will also show that the local result ( 5 )  is equivalent to the global result (9) (generalised 
to n 2 1) which, in its turn, we show to be a consequence of the Donsker-Varadhan 
large-deviation theory. 
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Remark 4. The paper by Tao er a1 [7], dealing with delta-function covariances in 
dimensions n 3 2, is wrong too, because in these cases it is known [ 121 that P( t ,  0) is 
infinite for any t .  

Remark 5. By a saddle point argument, the results (3) and ( 5 )  for x = 0 are equivalent 
to the leading low-energy behaviours 

of the density of states (inverse Laplace transform of P( t, 0)) 

p ( E ) = =  lpiim d t  e r E m  P’O 
p -im 

of a particle (with mass 1/20 ,  Planck’s constant h 1 )  in a Gaussian random potential 
V with the respective covariances. Equation ( 1 1 )  is well established in the literature 
[13]. For the white-noise potential in one dimension the density of states is known 
explicitly for all energies [14]. As it must do, its asymptotic evaluation agrees with 
(12) for n = 1 .  

Remark 6. Result ( 5 )  for x = 0 implies the strong-coupling limit 

” C O  lim a-’F(a, t )  = - yn (14) 

of the free energy F ( a ,  t )  of the Pekar-Frolich model for the large polaron [15-171 
generalised to n dimensions [ 18, 191 (electron-phonon coupling constant a, tem- 
perature l/k,t, Boltzmann’s constant kg, phonon energy hw = 1 ) .  In order to show 
this we start from the inequalities 

lnZ(1, (a2f)1’3). (15) 
t 

d F ( a ,  t )  s - t - ’  

Here we have used a scaling argument and the notation 

Z ( a , t ) : = P ( t , O )  for v 2  = a(4D)”2 (16) 
and identified the bare electron mass with 1/20 .  Then (14) follows from (5)  and the 
fact that F(a, t )  is increasing in r (cf [16]). 

Remark 7. From the topics in remarks 5 and 6, we collect the known information 
about the value of the numerical constant (6) occurring in (5) :  

72 0.4047 y3=O.lO8 513 (17)  
1 y1=2 

to be found in [ 1 1 ,  18, 151 respectively. In addition, the following inequalities: 

hold for n 5 2, with r denoting Euler’s gamma function. The lower bound has been 
obtained by varying over Gaussian functions f only. The upper bound is the negative 
ground-state energy of a particle (with mass h2/2) in the -Ix(-I potential in n 3 2 
dimensions. 
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For the proofs we set out from the Feynman-Kac formula [20] 

P ( r , x ) =  ( G(b(t ) -x)  exp(-/o'ds V(b(s)))). (19) 

Here the angular brackets denote the average over n-dimensional Brownian motion 
b( t )  ( t  3 0) starting at the origin, which is the continuous random process in [w" with 
b ( 0 )  = 0 and independent increments b( t + T )  - b( 1 )  ( T  > 0) having the stationary proba- 
bility density 

(6( b( t + 7) - b(  t )  - x))  = (4nD7)-"'* exp( -x2/4D7).  (20) 

In other words, the angular brackets serve as a streamlined notation for Wiener-type 
path integration. Averaging (19) over the random field yields 

P ( t ,  x )  =($(b(r)-x)e*t)  (21) 

with the non-negative path functional 

0, := lo' ds lo' ds'C( b( s) - b( s')). 

Our proofs of the inequality (10) and the assertions (3)  and (5) are all based on 
formula (21). 

We first turn to the proof of (10). In view of (20) it is sufficient to show that 

for each power @ ?  in the Taylor expansion of exp(Q1). But this follows from two 
facts. First, as a covariance C has a non-negative Fourier transform. Second, the 
explicit expression (e.g. [ 2 I] )  for the characteristic functional 

of pinned Brownian motion implies 

IG(4 x, 711 s G(t ,  0,7) (25) 

We now turn to the proof of (3) .  Since IC(x ) l s  C(0) and C is continuous, for 

C(0) (1 -E-KX2)s  c ( X ) s  c(0) (26) 

holds for all x E R". We note that if C is twice continuously differentiable, K can be 
chosen as - (V2C)(0)/2C(O) independent of E. Inserting (26) into (22) and (21) yields 
the estimates 

for each function 7:[0, t ]  + R". 

every E > 0 there is K > 0 such that 

s P ( t ,  x ) s e x p ( t 2 C ( 0 ) / 2 ) ( S ( b ( t ) - x ) ) .  
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The average on the left-hand side can be performed explicitly to give [21,22] 

where U:= ( D C ( O ) K ~ ~ ) ' / ~ .  ( 2 8 )  ( 4 ~ D t ) - " ' ~ ( ~ ) "  exp( -= X2 U coth (T 

sinh U 

Asymptotically the logarithm of expression ( 2 8 )  is of the order O ( t 3 / 2 )  as t + 00. Hence 
( 2 7 )  together with (20) implies 

Finally, performing the limit eJ.0 completes the proof of ( 3 ) .  

defined. It will be carried out in two steps. First we show the equality 
Clearly, the proof ( 5 )  requires a different method because C ( 0 )  for C of ( 4 )  is not 

and then calculate the limit 

Y4 
Iim t - 3  In(e*i) = - 7.. 
r-m 4 0  

Since C of ( 4 )  is non-negative, for ~ > 0 ,  and therefore according to ( 2 1 )  

~ ( t + 7 , ~ ) 2 ( ~ ( b ( t + 7 ) - ~ )  e*!) 

= IR,, dy(S(b(r+T) - b ( t ) - x + y ) ) ( s ( b ( t ) - y ) e * i )  

where we have used the fact that Brownian motion has independent increments. We 
restrict the y-integration to the ball B(x ,  r )  := { y  E R": ly - xl(r,  r)O} and use ( 2 0 )  to 
further estimate the right-hand side of ( 3 2 ) .  The resulting inequality 

P( t + 7, x)  2 (47rD7)-"/' exp( - r 2 / 4 D 7 )  

leads to 

For r + m  we achieve 

To get the reverse inequality, we make use of the fact that for t > 0 one can find a 
point & E  B ( x ,  r )  such that 

This implies 

lim t -3  In p ( t , ~  lim t - 3  in(e9). 
r-m r+m 

The limit rJ.0 together with ( 3 5 )  proves ( 3 0 ) .  

(37) 
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Due to the stochastic scaling relation & ( A ? )  = b( t ) f i  of Brownian motion [20] and 
the scaling relation (7) of the covariance (4), the identity 

holds for all A > 0. Choosing A = t Z  in (38) allows for the application [ 161 of a theorem 
of Donsker and Varadhan [17,23]  

to prove (31), which together with (30) proves (5) .  

References 

[ l ]  Ebeling W, Engel A, Esser B and Feistel R 1984 J. Star. Phys. 37 369 
[2] Zel’dovich Ya B, Molchanov S A, Ruzmaikin A A and Sokolov D D 1985 Zh. Eksp. Teor. Fiz. 89 2061 

11985 Sou. Phys.-JETP 62 11881; 1987 Usp. Fiz. Nauk 152 3 [1987 Sou. Phys.-Usp. 30 3531 
[3] Zhang Y C 1986 Phys. Rev. Lett. 56 2113 
[4] Nieuwenhuizen Th M 1989 Phys. Rev. Lett. 62 357 
[5] Engel A and Ebeling W 1987 Phys. Rev. Lett. 59 1979 

[6] Tao T 1988 Phys. Rev. Lett. 61 2405 
[7] Tao R, Widom A and Webman I 1989 Phys. Rev. A 39 3748 
[8] Rosenbluth M N 1989 Phys. Rev. Lett. 63 467 
[9] Lukacs E 1970 Characteristic Functions (London: Griffin) 2nd edn 

Zhang Y C 1987 Phys. Rev. Leu. 59 1980 

[ I O ]  Luttinger J M 1976 Phys. Rev. Lett. 37 609 
[ I l l  Gross E P 1977 J. Stat. Phys. 17 265 
[I21 Gross E P 1983 J. Stat. Phys. 33 107 
[I31 Lifshits I M, Gredeskul S A and Pastur L A 1988 Introduction to the Theory of Disordered Systems 

[14] Frisch H L and Lloyd S P 1960 Phys. Rev. 120 1175 
(New York: Wiley) 

Halperin B I 1965 Phys. Rev. 139 A 104 
Fukushima M and Nakao S 1977 Z. Wahrsch. uerw. Geb. 37 267 

[ I S ]  Miyake S J 1975 J. Phys. Soc. Japan 38 181 
[16] Adamowski J,  Gerlach B and Leschke H 1980 Phys. Lett. 79A 249 
[I71 Donsker M D and Varadhan S R S 1983 Commun. Pure Appl. Math. 36 505 
[I81 Wu Xiaoguang, Peeters F M and Devreese J T 1985 Phys. Rev. B 31 3420 
[19] Gross E P 1976 Ann. Phys., N Y  99 1 

Peeters F M, Wu Xiaoguang and Devreese J T 1986 Phys. Rev. B 33 3926 
Degani M H, Hip6lito 0, Lobo R and Farias G A 1986 J. Phys. C: Solid State Phys. 19 2919 

[20] Simon B 1979 Functional Integration and Quantum Physics (New York: Academic) 
[21] Adamowski J, Gerlach B and Leschke H 1982 J. Math. Phys. 23 243 
[22] Barta 

[23] Donsker M D and Varadhan S R S 1975 Functional Integration and its Applications ed A M Arthurs 

1973 Commun. I I .  Czech.-German Symp. Theory Disordered Systems, Prague 
Papadopoulos G J 1974 J. Phys. A: Math. Gen. 7 183 

(Oxford: Clarendon) 


